Keyword

Meteorological geographical features

178 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Resolution
From 1 - 10 / 178
  • 1km and 5km gridded Standardised Precipitation Index (SPI) data for Great Britain, which is a drought index based on the probability of precipitation for a given accumulation period as defined by McKee et al. (1993). SPI is calculated for different accumulation periods: 1, 3, 6, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the gamma distribution is 1961-2010. The dataset covers the period from 1961 to 2012. Full details about this dataset can be found at https://doi.org/10.5285/94c9eaa3-a178-4de4-8905-dbfab03b69a0

  • These data contain 408 instances of annual model output from JULES/IMOGEN simulations, covering the period between 1850-2100. Each simulation (which corresponds to one netcdf file) provides annual average of carbon stocks of the land, atmosphere and ocean store required to calculate the anthropogenic fossil fuel emissions as the residual of the yearly changes. Also included are the global warming variables, fractional land-cover, natural wetland extent and methane (CH4) flux and the soil temperature and moisture content for additional analysis. The spatial coverage is global with spatial resolution of the data is 2.5 degrees latitude, 3.75 degrees longitude. This dataset is the model output that was used in Comyn-Platt et al (2018) [ Comyn-Platt, E. et al. (2018). Carbon budgets for 1.5 and 2C targets lowered by natural wetland and permafrost feedbacks. Nature Geoscience. https://doi.org/10.1038/s41561-018-0174-9] Full details about this dataset can be found at https://doi.org/10.5285/1cebd79c-02e7-475a-a1da-1f26a963d41e

  • The meteorological data describes the air and soil temperatures, net radiation balance, down-welling photosynthetically active radiation, wind speed, wind direction and the vapour pressure deficit. Data collection was carried out at Cartmel Sands marsh from the 31st of May 2013 till the 26th of January 2015. The Cartmel Sands site is in Morecambe, North West England, and the meteorological tower was situated in the middle of the marsh. This data was collected as part of Coastal Biodiversity and Ecosystem Service Sustainability (CBESS): NE/J015644/1. The project was funded with support from the Biodiversity and Ecosystem Service Sustainability (BESS) programme. BESS is a six-year programme (2011-2017) funded by the UK Natural Environment Research Council (NERC) and the Biotechnology and Biological Sciences Research Council (BBSRC) as part of the UK's Living with Environmental Change (LWEC) programme. Full details about this dataset can be found at https://doi.org/10.5285/b1e2fb9c-8c34-490a-b6ae-2fdf6b460726

  • [THIS DATASET HAS BEEN WITHDRAWN]. 1 km gridded estimates of daily and monthly rainfall for Great-Britain and Northern Ireland (together with approximately 3000 km2 of catchment in the Republic of Ireland) from 1890 to 2012. The rainfall estimates are derived from the Met Office national database of observed precipitation. To derive the estimates, monthly and daily (when complete month available) precipitation totals from the UK rain gauge network are used. The natural neighbour interpolation methodology, including a normalisation step based on average annual rainfall, was used to generate the daily and monthly estimates. The estimated rainfall on a given day refers to the rainfall amount precipitated in 24 hours between 9am on that day until 9am on the following day. The CEH-GEAR dataset has been developed according to the guidance provided in BS 7843-4:2012. Full details about this dataset can be found at https://doi.org/10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e

  • [THIS DATASET HAS BEEN WITHDRAWN]. 1km resolution gridded meteorological variables over Great Britain for the years 1961-2015. This dataset contains time series of daily mean values of air temperature (K), specific humidity (kg kg-1), wind speed (m s-1), downward longwave radiation (W m-2), downward shortwave radiation (W m-2), precipitation (kg m-2 s-2) and air pressure (Pa), plus daily temperature range (K). These are the variables required to run the JULES land surface model [1] with daily disaggregation. The precipitation data were obtained by scaling the Gridded estimates of daily and monthly areal rainfall (CEH-GEAR) daily rainfall estimates [2,3] to the units required for JULES input. Other variables were interpolated from coarser resolution datasets, taking into account topographic information. This release supersedes the previous version [4], doi:10.5285/10874370-bc58-4d23-a118-ea07df8a07f2, as it corrects errors in the air pressure and daily temperature range files for 2013-2015. [1] Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes, Geoscientific Model Development, 4, 677-699. https://doi.org/10.5194/gmd-4-677-2011, 2011. [2] Tanguy, M.; Dixon, H.; Prosdocimi, I.; Morris, D. G.; Keller, V. D. J. (2016). Gridded estimates of daily and monthly areal rainfall for the United Kingdom (1890-2015) [CEH-GEAR]. NERC Environmental Information Data Centre. https://doi.org/10.5285/33604ea0-c238-4488-813d-0ad9ab7c51ca [3] Keller,V. D. J., Tanguy, M. , Prosdocimi, I. , Terry, J. A. , Hitt, O., Cole, S. J. , Fry, M., Morris, D. G., Dixon, H. (2015) CEH-GEAR: 1km resolution daily and monthly areal rainfall estimates for the UK for hydrological use. Earth Syst. Sci. Data Discuss., 8, 83-112. https://doi.org/10.5194/essdd-8-83-2015. [4] Robinson, E.L., Blyth, E., Clark, D.B., Comyn-Platt, E., Finch, J. , Rudd, A.C. (2016). Climate hydrology and ecology research support system meteorology dataset for Great Britain (1961-2015) [CHESS-met]. NERC Environmental Information Data Centre. https://doi.org/10.5285/10874370-bc58-4d23-a118-ea07df8a07f2 Full details about this dataset can be found at https://doi.org/10.5285/b745e7b1-626c-4ccc-ac27-56582e77b900

  • Standardised Precipitation Index (SPI) data for Integrated Hydrological Units (IHU) Hydrometric Areas (Kral et al. [1]). SPI is a drought index based on the probability of precipitation for a given accumulation period as defined by McKee et al. [2]. SPI is calculated for different accumulation periods: 1, 3, 6, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the gamma distribution is 1961-2010. The dataset covers the period from 1961 to 2012. [1] Kral, F., Fry, M., Dixon, H. (2015). Integrated Hydrological Units of the United Kingdom: Hydrometric Areas without Coastline. NERC-Environmental Information Data Centre doi:10.5285/3a4e94fc-4c68-47eb-a217-adee2a6b02b3 [2] McKee, T. B., Doesken, N. J., Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California. Full details about this dataset can be found at https://doi.org/10.5285/5e1792a0-ae95-4e77-bccd-2fb456112cc1

  • [This dataset is embargoed until November 17, 2025]. This dataset provides daily estimates at locations that are part of the COSMOS-UK monitoring network for meteorological and potential evapotranspiration variables in the Climate hydrology and ecology research support system for the period 2013-2017 (CHESS-met and CHESS-PE). Additionally, for the same period, it provides estimates at COSMOS-UK sites locations for soil moisture simulations provided by JULES (Joint UK Land Environment Simulator) at four layers: top layer (0.0-0.1 m depth), second layer (0.1-0.35 m depth), third layer (0.35-1 m depth) and bottom layer (1-3 m depth). The following variables are available in the dataset: daily temperature range (K), specific humidity (kg kg-1), precipitation (kg m-2 s-1), air pressure (Pa), downward longwave radiation (W m-2), downward shortwave radiation (W m-2), wind speed (m s-1), potential evapotranspiration (mm day-1) and potential evapotranspiration with interception correction (mm day-1), soil moisture content of 1-top layer (m depth), soil moisture content of 2-second layer (m depth), soil moisture content of 3-third layer (m depth) and soil moisture content of 4-bottom layer (m depth). Full details about this dataset can be found at https://doi.org/10.5285/2bc23a5a-3a47-44da-80f6-ced6ae4ac45f

  • Standardised Precipitation Evapotranspiration Index (SPEI) data for Integrated Hydrological Units (IHU) groups (Kral et al. [1]). SPEI is a drought index based on the probability of occurrence of the Climatic Water Balance (CWB) - which is equivalent to the amount of precipitation minus the amount of evapotranspiration - for a given accumulation period as defined by Vicente-Serrano et al. [2]. SPEI is calculated for different accumulation periods: 1, 3, 6, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the general logistic distribution is 1961-2010. The dataset covers the period from 1961 to 2012. [1] Kral, F., Fry, M., Dixon, H. (2015). Integrated Hydrological Units of the United Kingdom: Groups. NERC-Environmental Information Data Centre https://doi.org/10.5285/f1cd5e33-2633-4304-bbc2-b8d34711d902 [2] Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I. (2010) A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Climate, 23, 1696 to 1718. https://doi.org/10.1175/2009JCLI2909.1 Full details about this dataset can be found at https://doi.org/10.5285/9b550cc5-4cba-45fb-ab92-8408454fa1d4

  • Standardised Precipitation Index (SPI) data for Integrated Hydrological Units (IHU) groups (Kral et al. [1]). SPI is a drought index based on the probability of precipitation for a given accumulation period as defined by McKee et al. [2]. SPI is calculated for different accumulation periods: 1, 3, 6, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the gamma distribution is 1961-2010. The dataset covers the period from 1961 to 2012. [1] Kral, F., Fry, M., Dixon, H. (2015). Integrated Hydrological Units of the United Kingdom: Groups. NERC-Environmental Information Data Centre https://doi.org/10.5285/f1cd5e33-2633-4304-bbc2-b8d34711d902 [2] McKee, T. B., Doesken, N. J., Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California. Full details about this dataset can be found at https://doi.org/10.5285/dfd59438-2170-4472-b810-bab33a83d09f

  • This dataset includes six sets of model output from JULES/IMOGEN simulations. Each set includes output from JULES (the Joint UK Land Environment Simulator) run with 34 climate change patterns from 2000-2099. The outputs provide carbon stocks and variables related to the surface energy budget to understand the implications of land-based climate mitigation. Full details about this dataset can be found at https://doi.org/10.5285/333eb066-be07-4209-9dfe-2d9d18560de6